
Coulomb drag in a longitudinal magnetic field in quantum wells

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 87

(http://iopscience.iop.org/0953-8984/17/1/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 19:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/17/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) 87–98 doi:10.1088/0953-8984/17/1/009

Coulomb drag in a longitudinal magnetic field in
quantum wells

V L Gurevich and M I Muradov

Solid State Physics Division, A F Ioffe Institute of Russian Academy of Sciences, 194021 Saint
Petersburg, Russia

Received 25 October 2004, in final form 25 November 2004
Published 10 December 2004
Online at stacks.iop.org/JPhysCM/17/87

Abstract
The influence of a longitudinal magnetic field on the Coulomb drag current
created in the ballistic transport regime in a quantum well by a ballistic current
in a nearby parallel quantum well is investigated. We consider the case where
the magnetic field is so strong that the magnetic length aB is smaller than the
width of the well. Both in the ohmic and non-ohmic case, sharp peaks of the
drag current as a function of the gate voltage or chemical potential are predicted.
We study the dependence of the drag current on the voltage V across the driving
wire, as well as on the magnetic field B . The fine structure of the peaks due
to the electron spin is also considered. By studying the Coulomb drag one can
make conclusions about the electron spectrum, g-factor and electron–electron
interaction in quantum wells.

1. Introduction

The influence of a magnetic field on the Coulomb drag is investigated in different geometries.
The Coulomb drag between two two-dimensional (2D) quantum wells in a strong magnetic field
perpendicular to the planes of the wells and in the presence of disorder has been investigated
in [1]. In a magnetic field perpendicular to the planes the Hall voltage can be induced in the
drag quantum well in the direction perpendicular to both the direction of the magnetic field
and of the current in the drive well [2, 3]. These two geometries can be called transverse.

The purpose of the present paper is to study the influence of an in-well magnetic field B
on the Coulomb drag current in the course of ballistic (collisionless) electron transport in a
quantum well due to a ballistic drive current in a parallel quantum well. In other words, we
consider the longitudinal geometry, i.e. the case where the magnetic field is parallel to the
applied electric field E and to the plane of the well itself.

We will concern ourselves with the case of a strong magnetic field that makes the motion of
the carriers along the field one dimensional and alters the density of electron states. Moreover,
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we restrict ourselves with the quantum limit when only the ground Landau oscillator states are
occupied by electrons in the two quantum wells, so that

h̄ωB � µ. (1.1)

Here ωB is the cyclotron frequency while µ is the chemical potential. A theory of electronic
transport through three-dimensional ballistic microwires in longitudinal magnetic fields at
low temperatures has been developed in [4]. Our geometry is similar to that considered in [4].
However, in the present paper we consider the much simpler situation of a very strong magnetic
field satisfying equation (1.1). Later on we hope to return to a more general case of a weaker
magnetic field where several Landau levels may be involved.

The magnetic field making the motion of the electrons in the transverse direction one
dimensional maps the problem under consideration onto the Coulomb drag problem in two
one-dimensional wires already considered in [5, 6] in the Fermi liquid approach. Therefore,
our final formulae for the Coulomb drag current appear to be similar to those obtained in [6].
Actually this approach is not always valid for the quantum wires. For the simplest case where
in each wire only a single channel is active in the conductance the Luttinger liquid approach
is often used. It should be applied provided the reservoirs do not destroy the Luttinger liquid.
(In contrast, when several channels are active the Fermi liquid approach can be used.)

For the Coulomb drag in quantum wells the Fermi liquid approach is usually feasible. One
may expect that it can also be applied to the wells under the influence of an in-plane magnetic
field. Then we are left with a one-dimensional Fermi liquid problem that can be readily solved
by perturbation theory. Its comparison with experiment is called for.

Physically the magnetic field may also play the following important role. It will
suppress the tunnelling of electrons between the quantum wells that, if present, would impede
observation of the Coulomb drag (see the analysis in section 6).

Note that the magnetic field may change the electron quasimomentum relaxation time.
Scattering of electrons by ionized impurities in sufficiently strong magnetic fields may be
even weaker than for B = 0 [7]. As for the relaxation due to the phonon scattering, a strong
magnetic field can alter the density of electron states and in the quantum limit the relaxation
rate may be bigger than for B = 0. We, however, will assume the temperature to be so low
that the transport remains ballistic even in the presence of a magnetic field.

We consider the case where the magnetic length

aB =
√

h̄c

|e|B (1.2)

is much smaller than the distance W between quantum wells of width Lx ∼ W each:

W/aB � 1. (1.3)

This inequality establishes a lower bound for the values of the magnetic field for a given
distance between the quantum wells. For instance, for W ∼ 80 nm the inequality requires
magnetic fields of the order of B ∼ 1 T, or bigger.

It is convenient to break our calculations into several parts. In the first part we will give the
principal equations of our theory based on the Boltzmann treatment of the transport. We will
consider a linear response in section 3. Next we will discuss a non-ohmic case in section 4.
Comparison of our results with the 1D Coulomb drag results in the longitudinal geometry and
2D Coulomb drag results for B = 0 will be given in section 6.
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Figure 1. Coulomb drag diagram. Here the labels (2), (1) stand for the drive (drag) quantum wells.

2. Boltzmann equation

We consider two parallel quantum wells perpendicular to the x axis. The eigenfunctions and
eigenvalues for a one-electron problem in a magnetic field along the z axis in the i th quantum
well is (we use the gauge A = (0, Bx, 0))

ψ0py pz = 1√
L y Lz

ϕ0

(
x − x py

aB

)
exp(ipy y/h̄ + ipzz/h̄), (2.1)

ε0pz = Ui +
h̄ωB

2
+

p2
z

2m
. (2.2)

Here m is the effective electron mass, and ϕ0[(x − x py )/aB] is the wavefunction of a harmonic
oscillator in the ground state oscillating about the point x py = −a2

B py/h̄ = −py/mωB. The
wavefunction ψ0py pz describes a state for which the electron probability distribution is large
only within the slab of width ≈aB symmetrically situated about the plane x = x py , and falls
off exponentially outside the slab. As we consider the case Lx � aB we will assume the
wavefunction to be equal to ψ0py pz if x py is within the quantum well and zero otherwise. In
what follows we will need the matrix elements of the functions exp(±iqr) between any two
ground states of a Landau oscillator. We have

〈p′
y p′

z|e±iqr|py pz〉 = exp[±iqx(x py + x p′
y
)/2]

× exp[−a2
Bq2

x/4] exp[−(x py − x p′
y
)2/4a2

B]δp′
z ,pz±h̄qzδp′

y,py±h̄qy . (2.3)

A diagram representing the Coulomb drag effect is given in figure 1.
The external driving force enters the diagram through the nonequilibrium distribution

function represented by the solid curves marked by the symbol (2) indicating that they represent
the drive quantum well. Now we embark on an analysis of the conservation laws for the
collisions of electrons belonging to two different quantum wells. We have

ε
(1)
0pz

+ ε(2)0p′
z
= ε

(1)
0pz+h̄qz

+ ε(2)0p′
z−h̄qz

, (2.4)

where ε(1,2)0pz
= U1,2 + h̄ωB/2 + p2

z/2m. Here U1,2 describe the positions of the bottoms of the
electron bands in the wires.
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The solution of equation (2.4) is

h̄qz = p′
z − pz. (2.5)

The δ-function describing energy conservation can be recast into the form

δ(ε
(1)
0pz

+ ε(2)0p′
z
− ε

(1)
0pz+h̄qz

− ε
(2)
0p′

z−h̄qz
) = m

h̄|qz|δ[h̄qz − (p′
z − pz)]. (2.6)

Therefore, the initial quasimomenta pz and p′
z after the collision become pz + h̄qz = p′

z and
p′

z − h̄qz = pz , i.e. the electrons swap their quasimomenta as a result of the collision.
Following [5, 6] we assume that the drag current in quantum well 1 is much smaller than

the drive ballistic current in quantum well 2 and calculate it by solving the Boltzmann equation
for quantum well 1. We have

vz

∂�F (1)
0py
(pz, z)

∂z
= −I (12){F (1), F (2)}, (2.7)

where F (1,2) are the electron distribution functions in quantum wells 1 and 2 respectively,
and the collision integral I (12){F (1), F (2)} takes into account the interwell electron–electron
scattering:

I (12){F (1), F (2)} =
∑

p′
z p′

yq ′
x q

W
1pz +h̄qz ,2p′

z−h̄qz

1pz ,2p′
z

(q ′
x, qx , qy, py, p′

y)S. (2.8)

In this expression the sum over p′
y should be determined by the requirement that the x-centre

of the oscillator function is within the second quantum well. The requirement imposes the
constraint

h̄

a2
B

(
W + Lx − Lx

2

)
< p′

y <
h̄

a2
B

(
W + Lx +

Lx

2

)
, (2.9)

and the product of distribution functions S is

S = F (1)
0pz

F (2)
0p′

z
(1 − F (1)

0pz +h̄qz
)(1 − F (2)

0p′
z−h̄qz

)− F (1)
0pz +h̄qz

F (2)
0p′

z−h̄qz
(1 − F (1)

0pz
)(1 − F (2)

0p′
z
) (2.10)

F (1)
0pz

= θ [vz] f (ε0pz − µ1L
B ) + θ [−vz] f (ε0pz − µ1R

B ) +�F (1)
0pz

(2.11)

where

θ [vz] =
{

1 for vz > 0

0 for vz < 0.

Here we assume that the electrons move ballistically within the quantum well (except,of course,
the interwell Coulomb scattering). The electrons moving from the left and right reservoirs
have the chemical potentials µ1L

B = µB − eVd/2 and µ1R
B = µB + eVd/2 respectively. We also

introduce the drag voltage Vd induced across the drag quantum well due to the quasimomentum
transfer from the driving quantum well, i.e. we assume an open circuit for the drag quantum
well.

The solution of equation (2.7) is (here we omit the equilibrium part)

�F (1)
0pz

= −
(

z ± Lz

2

)
1

vz
I (12){F (1), F (2)}, for

pz > 0,

pz < 0.
(2.12)

Using the particle conserving property of the scattering integral∑
pz py

I (12){F (1), F (2)} = 0 (2.13)
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we get for the total current in the drag quantum well defined as

J = e

Lz

∑
py pz

vz F (1)
0pz
, (2.14)

the result

J = −e
∑

py,(pz>0)

I (12){F (1), F (2)} + e
1

Lz

∑
py,(pz>0)

vz[ f (ε0pz − µ1L
B )− f (ε0pz − µ1R

B )]. (2.15)

In these equations the sum over py is restricted by the requirement that the x-centre of the
Landau oscillator must be within the quantum well, so that −h̄Lx/2a2

B < py < h̄Lx/2a2
B.

Introducing the density of states (including spin) per unit quasimomentum interval

N(pz) d pz = 2
Lz

(2π h̄)2
h̄Lx L y

a2
B

d pz (2.16)

we have

JOhm = −e
2eVd

(2π h̄)2
h̄Lx L y

a2
B

∫ ∞

U1+h̄ωB/2
dε

(
−∂ f (ε − µB)

∂ε

)
. (2.17)

For the degenerate electron gas this expression can be written as

JOhm = − e2

π h̄

Lx L y

2πa2
B

Vd. (2.18)

Here the number of Larmor circles covering the cross section of the quantum well Lx L y/2πa2
B

appears instead of the number of open channels in the 1D situation. (We will sometimes use
the term ‘Larmor circles’, more appropriate for the classical limit, also for the quantum limit
considered here.)

We assume that only the ground Landau oscillator state is occupied, so that

U1 + 1
2 h̄ωB < µB < U1 + 3

2 h̄ωB. (2.19)

Taking into account equation (2.6) we obtain for the Coulomb scattering probability
equation (2.8)

W
1pz +h̄qz ,2p′

z−h̄qz

1pz ,2p′
z

(q ′
x, qx , qy, py, p′

y) = m

h̄|qz|δ[h̄qz − (p′
z − pz)]

2π

h̄
UqUq ′

x qyqz

× 〈pz, py |e−iq ′
x x−iqy y−iqz z |pz + h̄qz, py + h̄qy〉

× 〈pz + h̄qz, py + h̄qy|eiqx x+iqy y+iqz z|pz, py〉
× 〈p′

z, p′
y |eiq ′

x x+iqy y+iqz z |p′
z − h̄qz, p′

y − h̄qy〉
× 〈p′

z − h̄qz, p′
y − h̄qy|e−iqx x−iqy y−iqz z |p′

z, p′
y〉. (2.20)

Here we use the unscreened Coulomb potential, postponing discussion as to when this
approximation can be justified until the last section.

To calculate the drag current we iterate the Boltzmann equation in the interwell collision
term that we assume to be small. Therefore one can choose the distribution functions in the
collision term to be equilibrium ones, e.g. F (1)

0p = f (ε(1)0p − µB) for the first quantum well.
We assume, in the spirit of the approach developed by Landauer [8], Imry [9] and

Büttiker [10], the drive quantum well to be connected to reservoirs which we call ‘left’ l
and ‘right’ r. Each of them is in independent equilibrium described by the shifted chemical
potentials µl

B = µB − eV/2 and µr
B = µB + eV/2, where µB is the equilibrium chemical

potential in the magnetic field. Therefore, the electrons entering the quantum well from the
‘left’ (‘right’) and having quasimomenta p′

z > 0 (p′
z < 0) are described by F (2)

0p′
z
= f (ε(2)0p′

z
−µl

B)
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[F (2)
0p′

z
= f (ε(2)0p′

z
− µr

B)] and we see that the collision integral equation (2.8) is identically zero
if the initial p′

z and final p′
z − h̄qz quasimomenta in the drive quantum well are of the same

sign. This means that only the backscattering processes contribute to the drag current.
Due to equation (2.6) we are left only with p′

z < 0 (since we are restricted according to
equation (2.15) by the constraint p′

z − h̄qz = pz > 0) and obtain in view of the δ-function in
equation (2.20) the following product of distribution functions in the collision term:

P = F (1)
0pz

F (2)r
0p′

z
(1 − F (1)

0p′
z
)(1 − F (2)l

0pz
)− F (1)

0p′
z
F (2)l

0pz
(1 − F (1)

0pz
)(1 − F (2)r

0p′
z
), (2.21)

or

P = f (ε(1)0pz
− µB) f (ε(2)0p′

z
− µr

B)[1 − f (ε(1)0p′
z
− µB)][1 − f (ε(2)0pz

− µl
B)]

− f (ε(1)0p′
z
− µB) f (ε(2)0pz

− µl
B)[1 − f (ε(1)0pz

− µB)][1 − f (ε(2)0p′
z
− µr

B)]. (2.22)

This equation will be analysed in the following sections.

3. Linear response

In this case eV/T � 1 (we assume the Boltzmann constant to be equal to 1) and equation (2.22)
can be recast into the form

P = eV

T
f (ε(1)0pz

− µB) f (ε(2)0p′
z
− µB)[1 − f (ε(1)0p′

z
− µB)][1 − f (ε(2)0pz

− µB)]. (3.1)

Shifting the integration variable p′
y → p′

y + h̄(W + Lx)/a2
B we have for the drag current

Jdrag = −e
eV

T

2π

h̄

(
4πe2

κ

)2
1

2π h̄

∫ ∞

0

2Lz d pz

2π h̄

∫ ∞

0

d p′
z

2π h̄

m

(pz + p′
z)

× f (ε(1)0pz
− µB) f (ε(2)0p′

z
− µB)[1 − f (ε(1)0p′

z
− µB)][1 − f (ε(2)0pz

− µB)]

×
∫ h̄Lx /2a2

B

−h̄Lx /2a2
B

2L y d py

2π h̄

d p′
y

2π h̄
g00

[
pz + p′

z

h̄
,

py − p′
y

h̄

]
(3.2)

where κ is the dielectric susceptibility and

g00(kz, ky) =
∫ ∞

−∞
dqy

2π
e−a2

Bq2
y A2(kz, ky, qy), (3.3)

A(kz, ky, qy) =
∫ ∞

−∞
dqx

2π

e−ia2
Bqx [ky−(W+Lx )/a2

B+qy]e−a2
Bq2

x /2

(k2
z + q2

⊥)
, (3.4)

q2
⊥ = q2

x + q2
y . The last integral over the centres of the Landau oscillators (since

x py = −a2
B py/h̄) in equation (3.2) plays the role of an effective Coulomb interaction potential

between the electrons freely moving along the direction of applied magnetic field.∫ h̄Lx /2a2
B

−h̄Lx /2a2
B

2L y d py

2π h̄

d p′
y

2π h̄
g00

[
pz + p′

z

h̄
,

py − p′
y

h̄

]

= 2L y

(2π)2

∫ Lx /a2
B

0
dkyky

{
g00

[
pz + p′

z

h̄
,

Lx

a2
B

− ky

]
+ g00

[
pz + p′

z

h̄
, ky − Lx

a2
B

]}
.

(3.5)

We keep only the first term in this expression since the second term includes a faster oscillating
exponent ∼ exp[iqx(W + Lx)] as compared to the oscillating exponent in the first term
∼ exp(iqx W ).
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As W/aB � 1, we can sufficiently simplify the expression for g00. We obtain

g00(kz, ky) = exp(a2
Bk2

z )

∫ ∞

−∞
dqy

2π
A2(kz, ky, qy). (3.6)

A(kz, ky, qy) �
∫

dqx

2π

eiqx [(W+Lx )−a2
Bky ]

q2
x + q2

y + k2
z

= e−|W+Lx −a2
Bky |

√
q2

y +k2
z

2
√

q2
y + k2

z

. (3.7)

Finally, the interaction term acquires the form∫ h̄Lx /2a2
B

−h̄Lx /2a2
B

2L y d py

2π h̄

d p′
y

2π h̄
g00

[
kz,

py − p′
y

h̄

]
= L y

4aB(2πaBkz)3
exp(a2

Bk2
z )�(2Wkz), (3.8)

where

�(α) =
∫ ∞

1
dξ

e−αξ

ξ3
√
ξ2 − 1

. (3.9)

For α � 1,

�(α) �
√
π

2α
e−α. (3.10)

This result for the effective interaction (3.8) can be explained as follows: the Larmor circles
within the layers of width Lx · 1/(kz Lx) near the surfaces contribute to the interaction. The
number of interacting circles from two quantum wells is(

L y

aB

Lx · 1/(kz Lx)

aB

)2

.

The sum over qx, q ′
x ∼ kz, qy ∼ √

kz/W brings the factor (kzLx)
2·L y

√
kz/W . The exponential

decay of the drag with the distance between the quantum wells W is a consequence of the one-
dimensional character of the drag in the strong longitudinal magnetic field. Combining all these
factors and multiplying the result by U 2 ∼ (4πe2)2/(Lx L y Lz)

2k4
z we arrive at equation (3.8).

The product of the distribution functions in equation (3.2) is a sharp function of pz and
p′

z at small temperatures, acquiring nonzero values provided that pz, p′
z are equal to pB

F with
the accuracy T/vB

F . We assume that the quasimomentum interval T/vB
F is much smaller than

h̄/W :

T � h̄vB
F

W
. (3.11)

Here we wish to note that the Boltzmann treatment of transport phenomena requires that the
uncertainty in the longitudinal quasimomentum h̄/Lz must be smaller than the quasimomentum
interval T/vB

F , i.e. h̄/Lz � T/vB
F . These two requirements automatically lead to the inequality

W � Lz . We assume that the last inequality holds.
According to our assumptions we can regard the interaction term in equation (3.2) as

slowly varying and obtain

Jdrag = J0
eV

4εB
F

T

εB
F

(
U12

2T

)2 [
sinh

(
U12

2T

)]−2

, (3.12)

where

J0 = − e5m

κ2(4π h̄)3
Lz L y

a2
B

1

(aBkB
F )

2
e(2aBkB

F )
2
�

(
4WkB

F

)
. (3.13)

Here we introduced notations U12 = U1−U2 and mvB
F = pB

F = √
2m[µB − U1 − h̄ωB/2],

kB
F = pB

F/h̄.
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We assume that the electrons remain degenerate in the magnetic field:

εB
F ≡ µB − U1 − h̄ωB

2
� T . (3.14)

The quantum limit is considered, i.e. the case where all the electrons belong to the first
Landau level:

εB
F < h̄ωB. (3.15)

Since the electron concentration NB under this condition is related to the chemical potential
by the equation

NB = mh̄ωB pB
F

π2h̄3 (3.16)

equations (3.14) and (3.15) lead to

T � (pB
F )

2

2m
< h̄ωB, pB

F = π2h̄3

m

NB

h̄ωB
. (3.17)

The first inequality in this relation is weaker than equation (3.11) if εF ∼ h̄ωB and WkF � 1.
Introducing the electron concentration N and the chemical potential µ for B = 0 given by

N = (2mεF)
3/2

3π2h̄3 , εF = µ− U1 (3.18)

one can rewrite equation (3.17) as

T � 4

9

(
NB

N

)2 (
εF

h̄ωB

)2

εF < h̄ωB. (3.19)

Note that the second inequality in this expression does not depend on the electron mass and can
require magnetic fields stronger than equation (1.3) (thus imposing a constraint on the electron
concentration, or, if the latter is given the inequality may require stronger magnetic fields than
is required by equation (1.3)). For instance, in a magnetic field of the order of B ∼ 10 T the
electron concentration N must be smaller than 2.7 × 1017 cm−3.

Considering the case of the aligned quantum wells, so that U1 = U2 (otherwise the effect
is exponentially small; see equation (3.12)) and putting N = NB we obtain

Jdrag = J0
eV

4T

(
T

εF

)2 (
3h̄ωB

2εF

)4

, (3.20)

J0 = −e5mL y Lzk2
F

9κ2(4π h̄)3

(
3h̄ωB

2εF

)4

exp[12(2εF/3h̄ωB)
3]�

(
4WkF

2εF

3h̄ωB

)
. (3.21)

The drag current is a rapidly increasing function of the applied magnetic field, as the latter
increases the density of states and decreases the transferred Fermi momentum (see figure 2).

To make an estimate of the current we put m = 0.07m0 (where m0 is the free electron
mass), h̄ωB ∼ εF = 14 meV, κ = 13, Lz ∼ L y = 1 µm, and W = 40 nm.

Jdrag ∼ 10−11 A.

In the linear response regime we can introduce a drag resistance, i.e. the coefficient that
depends only on the quantum well parameters and relates the drive current Jdrive in quantum
well 2 to the induced voltage in the drag quantum well Jdrive RD = Vd. Here the drive current
in quantum well 2 is

Jdrive = −V
e2

2π h̄

Lx L y

πa2
B

(3.22)
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Figure 2. Drag current versus dimensionless magnetic field b = h̄ωB/εF for two values of the
interwell distances W = 40 nm (1) and W = 50 nm (2). The other parameters are given in the
text.

(see equation (2.18)), and Vd is determined by the condition of zero total current J =
Jdrag + JOhm = 0 in the drag quantum well in equation (2.15).

RD = π h̄

e2

EB

εF

T

εF

Lz

L y

1

(kF Lx)2

(
3h̄ωB

4εF

)6

exp[12(2εF/3h̄ωB)
3]�

[
4WkF

2

3

εF

h̄ωB

]
, (3.23)

where we introduced the effective Bohr energy EB = me4/κ2h̄2 and

pB
F = 2

3

NB

N

εF

h̄ωB
pF, pF = √

2mεF. (3.24)

With the parameters given above we have the following estimate for the transresistance:

RD ∼ 0.4 m�.

Now let us discuss when one can neglect the screening. Since the transferred momenta are
qz ∼ 2 pB

F/h̄ it is permissible not to take into account the screening of the Coulomb potential
if the inverse screening length is much smaller than the transferred momentum. The dielectric
function in our case has contributions from both the intrawell and the interwell Coulomb
interactions. Neglecting the small interwell contribution it can be written as

ε(ω, qz) = |1 − Uq�
R(ω,q)|2, (3.25)

where �R is the retarded polarization function. We can estimate the latter at transferred
energies ∼T and momenta ∼2 pB

F regarding the electron motion as one dimensional:

�R(T, 2 pB
F ) � Lx L y

2πa2
B

mLz

π h̄ pB
F

ln
εB

F

T
. (3.26)

Therefore one can estimate the screening length from

1

r2
s

∼ 4πe2

κLx L y Lz
�R(T, 2πB

F ) (3.27)

as

1

rs
∼

√
πe2 NB

κεB
F

ln
εB

F

T
. (3.28)

The required inequality can be written as (we put NB = N)

N1/3e2

κ
ln

[
εF

T

(
εF

h̄ωB

)2
]

� εF

(
εF

h̄ωB

)4

. (3.29)

We will assume this inequality to be satisfied.
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4. Non-ohmic case

The product of distribution functions in equation (2.22) can be recast into the form

P = 2 sinh(eV/2T ) exp{(ε(1)pz
− µB)/T } exp{(ε(2)pz ′ − µB)/T } f (ε(1)pz

− µB)

× f (ε(2)p′
z

− µB − eV/2) f (ε(1)p′
z

− µB) f (ε(2)pz
− µB + eV/2). (4.1)

As P is a sharp function of pz and p′
z one can take out of the integral all the slowly varying

functions and get∫ ∞

0
d pz d p′

z

P
(pz + p′

z)

∫ h̄Lx/2a2
B

−h̄Lx /2a2
B

2L y d py

2π h̄

d p′
y

2π h̄
g00

[
(pz + p′

z)/h̄, (py − p′
y)/h̄

]

= L ym2a2
BT 2 exp[(2aBkB

F )
2]

4(4π h̄)3(aBkB
F )

6
�(4WkB

F )

× sinh

(
eV

2T

) eV
4T − U12

2T

sinh
(

eV
4T − U12

2T

) eV
4T + U12

2T

sinh
(

eV
4T + U12

2T

) . (4.2)

The drag current is

Jdrag = J0
1

2

(
T

εB
F

)2

sinh

(
eV

2T

) eV
4T − U12

2T

sinh
(

eV
4T − U12

2T

) eV
4T + U12

2T

sinh
(

eV
4T + U12

2T

) . (4.3)

For eV � T one gets equation (3.20). In the opposite case eV � T one gets a nonvanishing
result for equation (4.3) only provided |U12| < eV/2. One obtains the following equation for
the drag current:

Jdrag = J0

[(
eV

4εF

)2

−
(

U12

2εF

)2
](

3h̄ωB

2εF

)4

. (4.4)

Thus the drag current vanishes unless eV > 2|U12|.

5. Spin effects

Let us discuss how the Zeeman splitting by an in-plane magnetic field

HZ = gµBBs, (5.1)

whereµB is the Bohr magneton, will modify our results. The in-plane g-factor for the quantum
wells of GaAs/AlGaAs heterostructures in the wide well limit is close to that of the bulk GaAs,
where g = −0.44. For narrower quantum wells according to Ivchenko et al [11] its absolute
value is smaller and the g-factor can even change the sign.

For electron energies including this splitting we have

ε
(1,2)
0pz± = U1,2 +

p2
z

2m
+

h̄ωB

2
(1 ±�), (5.2)

where the dimensionless energy shift� = gm/2m0 includes the ratio of the effective electron
mass m to the free electron mass m0. As in GaAs the ratio is small, m ≈ 0.07m0, we conclude
that the shift |�| � 1. However, the splitting proportional to h̄ωB� may be important since
this energy shift enters our equations along with the energy band bottom difference U12 that we
also consider to be small. Therefore, instead of equation (3.12) we arrive at a similar formula
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having a sort of ‘fine’ structure:

Jdrag = J0
eV

16εB
F

T

εB
F

{
2

(
U12

2T

)2[
sinh

(
U12

2T

)]−2

+

(
U12 + h̄ωB�

2T

)2[
sinh

(
U12 + h̄ωB�

2T

)]−2

+

(
U12 − h̄ωB�

2T

)2[
sinh

(
U12 − h̄ωB�

2T

)]−2}
. (5.3)

Investigation of this ‘fine’ structure provides one more method of measurement of the in-plane
g-factor.

6. Concluding remarks

It is interesting to compare our results with two different experimental geometries. First, let us
consider the influence of magnetic field on 1D Coulomb drag for the longitudinal geometry.
In this case the magnetic field is directed along the z axis and is parallel to 1D nanowires. For
simplicity, we assume that the confining potential in the absence of the magnetic field is

U(x, y) = m�2

2
(x2 + y2), (6.1)

where � is the eigenfrequency of electron oscillation in the potential U(x, y). The applied
magnetic field shortens the radius of the state so that it becomes

a2
B = a2

0√
1 + (B/Bc)

2
, Bc = 2

�mc

|e| , a0 =
√

h̄

2m�
, (6.2)

where a0 is the radius in the absence of the magnetic field. For the lowest Landau level we
have

φ = 1√
2π

1

aB
exp(−ρ2/4a2

B), εp = h̄2

2ma2
B

+
p2

z

2m
. (6.3)

The wavefunction of the electron in the second wire can be obtained by a gauge transformation
of the wavefunction in the first one. Since the interaction term g00 is not phase sensitive we
are left only with a shift by the distance W between the centres of the wires in the argument
of the wavefunction (6.3). As a result, one gets for the interaction

g00(2 pB
F ) = 4e−W 2/2a2

B

[∫ ∞

0
dρ ρe−ρ2

I0

(
W

aB
ρ

)
K0

(
4

pB
F aB

h̄
ρ

)]2

, (6.4)

where I0(x), K0(x) are the modified Bessel functions. The quasimomentum

pB
F = 1

2π h̄ NB
L

must satisfy the inequality

T � (pB
F )

2/2m <
h̄2

2ma2
B

, (6.5)

since we have assumed that only the lowest Landau level is occupied. Here NB
L is the electron

density per unit length in the magnetic field. The expression (6.4) demonstrates that, provided
the magnetic field goes up, the localization radius aB of the wavefunctions suppresses the
probability of the backscattering processes. Note that if one assumes NB

L = NL, where NL

is the electron density per unit length for B = 0, then the effective interaction depends on
the magnetic field only via aB. Therefore in this case the magnetic field does not change
the magnitude of the transferred momentum, in contrast with the previous case where such a
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change leads to a rapid increase of the drag current in a strong magnetic field. The drag current
is

Jdrag = J01
eV

T

(
T

εB
F

)2 (
U12

2T

)2 [
sinh

(
U12

2T

)]−2

(6.6)

J01 = − e5m

2π2κ2h̄3 Lzk
B
F g(2 pB

F ). (6.7)

Second, we can compare our results with the drag between two two-dimensional quantum
wells [12] in the field-free case. In this case the transresistance ρ12 is proportional to

ρ12 ∼ T 2 1

(kSd)2
1

(kFd)2
, (6.8)

where kS is the single-quantum well (two-dimensional) Thomas–Fermi screening wavevector
of the order of the inverse effective Bohr radius, and d is the interwell distance. First we
note that the temperature dependence of the Coulomb drag between two (three-dimensional)
quantum wells in the strong magnetic fields is weaker than for the drag in two dimensions.
Second, we note that in the latter case the contribution from the backscattering processes can
be neglected as compared to the small angle scattering contribution with transferred momenta
0 < q < 1/d � kS, while in our case only the backscattering processes are important (this is
again a consequence of the one-dimensionality of the Coulomb drag problem in the quantum
limit).

To summarize, we have developed a theory of the Coulomb drag between two quantum
wells in a strong longitudinal magnetic field. We have considered a comparatively simple
limiting case where only the lowest Landau level is occupied. The strong magnetic field
makes transverse motion of an electron one dimensional. These one-dimensional electron
states can be visualized as quantum ‘tubes’ or ‘wires’. Therefore, the Coulomb drag problem
in this situation becomes similar to the Coulomb drag problem between two parallel nanowires.
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[10] Büttiker M 1986 Phys. Rev. Lett. 57 1761
[11] Ivchenko E L, Kiselev A A and Willander M 1997 Solid State Commun. 102 375
[12] Gramila T J, Eisenstein J P, MacDonald A H, Pfeiffer L N and West K W 1991 Phys. Rev. Lett. 66 1216


